回火
将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理工艺。或将淬火后的合金工件加热到适当温度,保温若干时间,然后缓慢或快速冷却。一般用于减低或消除淬火钢件中的内应力,或者降低其硬度和强度,以提高其延性或韧性。
钢的回火
回火是工件淬硬后加热到AC1以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。
回火一般紧接着淬火进行,其目的是:
(a)消除工件淬火时产生的残留应力,防止变形和开裂;
(b)调整工件的硬度、强度、塑性和韧性,达到使用性能要求;
(c)稳定组织与尺寸,保证精度;
(d)改善和提高加工性能。因此,回火是工件获得所需性能的最后一道重要工序。
按回火温度范围,回火可分为低温回火、中温回火和高温回火。
⑴低温回火
工件在150~250℃进行的回火。
目的是保持淬火工件高的硬度和耐磨性,降低淬火残留应力和脆性
回火后得到回火马氏体,指淬火马氏体低温回火时得到的组织。力学性能:58~64HRC,高的硬度和耐磨性。
应用范围:刃具、量具、模具、滚动轴承、渗碳及表面淬火的零件等。
⑵中温回火
工件在350~500℃之间进行的回火。
目的是得到较高的弹性和屈服点,适当的韧性。回火后得到回火托氏体,指马氏体回火时形成的铁素体基体内分布着极其细小球状碳化物(或渗碳体)的复相组织。
力学性能:35~50HRC,较高的弹性极限、屈服点和一定的韧性。
应用范围:弹簧、锻模、冲击工具等。
⑶高温回火
工件在500℃以上进行的回火。
目的是得到强度、塑性和韧性都较好的综合力学性能。
回火后得到回火索氏体,指马氏体回火时形成的铁素体基体内分布着细小球状碳化物(包括渗碳体)的复相组织。
力学性能:200~350HBS,较好的综合力学性能。
应用范围:广泛用于各种较重要的受力结构件,如连杆、螺栓、齿轮及轴类零件等。
工件淬火并高温回火的复合热处理工艺称为调质。调质不仅作最终热处理,也可作一些精密零件或感应淬火件预先热处理。
钢淬火后在300℃左右回火时,易产生不可逆回火脆性,为避免它,一般不在250~350℃范围内回火。
含铬、镍、锰等元素的合金钢淬火后在500~650℃回火,缓冷易产生可逆回火脆性,为防止它,小零件可采用回火时快冷;大零件可选用含钨或钼的合金钢。
钢在回火后的性能
淬火钢回火后的性能���决于它的内部显微组织;钢的显微组织又随其化学成分、淬火工艺及回火工艺而异。碳钢在100~250℃之间回火后能获得较好的力学性能。合金结构钢在200~700℃之间回火后的力学性能的典型变化如图5所示。从图5可以看出,随着回火温度的升高,钢的抗拉强度σb单调下降;屈服强度σ0.3先稍升高而后降低;断面收缩率ψ和伸长率δ不断改善;韧性(用断裂韧度K1c为指标)总的趋势是上升,但在300~400℃之间和500~550℃之间出现两个极小值,相应地被称为低温回火脆性与高温回火脆性。因此,为了获得良好的综合力学性能,合金结构钢往往在三个不同温度范围回火:超高强度钢约在200~300℃;弹簧钢在460℃附近;调质钢在550~650℃回火。碳素及合金工具钢要求具有高硬度和高强度,回火温度一般不超过200℃。回火时具有次生硬化的合金结构钢、模具钢和高速钢等都在500~650℃范围内回火
回火脆性
低温回火脆性许多合金钢淬火成马氏体后在250~400℃回火中发生的脆化现象。已经发生的脆化不能用重新加热的方法消除,因此又称为不可逆回火脆性。引起低温回火脆性的
原因已作了大量研究。普遍认为,淬火钢在250~400℃范围内回火时,渗碳体在原奥氏体晶界或在马氏体界面上析出,形成薄壳,是导致低温回火脆性的主要原因。钢中加入一定量的硅,推迟回火时渗碳体的形成,可提高发生低温回火脆性的温度,所以含硅的超高强度钢可在300~320℃回火而不发生脆化,有利于改进综合力学性能。
高温回火脆性许多合金钢淬火后在500~550℃之间回火,或在600℃以上温度回火后以缓慢的冷却速度通过500~550℃区间时发生的脆化现象。如果重新加热到600℃以上温度后快速冷却,可以恢复韧性,因此又称为可逆回火脆性。已经证明,钢中P、Sn、Sb、As等杂质元素在500~550℃温度向原奥氏体晶界偏聚,导致高温回火脆性;Ni、Mn等元素可以和P、Sb等杂质元素发生晶界协同偏聚(cosegregation),Cr元素则又促进这种协同偏聚,所以这些元素都加剧钢的高温回火脆性。相反,钼与磷交互作用,阻碍磷在晶界的偏聚,可以减轻高温回火脆性。稀土元素也有类似的作用。钢在600℃以上温度回火后快速冷却可以抑止磷的偏析,在热处理操作中常用来避免发生高温回火脆性。